

Klausur zur Vorlesung Adaptive Systeme Wintersemester 2009/2010

Datum: 23.02.2010

Vorname:
Name:
Matrikelnummer:
Geburtsdatum:
Studiengang:

Als BSc bearbeiten Sie bitte den Teil der Aufgaben, der mit "AS-1" gekennzeichnet ist. Als MSc bearbeiten Sie den"AS-1" und/oder den "AS-2"-Teil. Im AS-1-Teil können 37 Punkte in insgesamt vier Aufgaben erreicht werden. Im AS-2-Teil aus insgesamt fünf Aufgaben sind es 45 Punkte.

Durch die Übungspunkte können maximal 10% der Klausurleistung erbracht werden. Als Hilfsmittel ist ein Taschenrechner erlaubt.

Viel Erfolg!

Wird vom Prüfer ausgefüllt:

1	2	3	4	5	6	7	8	9	Σ
/10	/12	/5	/10	/10	/10	/6	/6	/13	

Punkte Klausur: Punkte Übungen: Punkte Gesamt:

MatrikelNr:			
Note:			

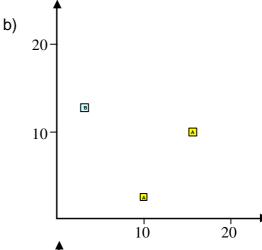
AS-1.1 Wichtige Definitionen

10P

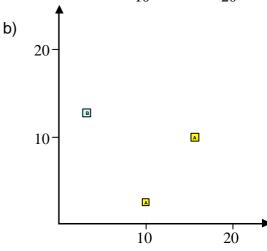
Definieren Sie folgende Begriffe mit kurzen Stichworten

- a) formales Neuron
- b) binäres Neuron
- c) Online-Lernverfahren
- d) Offline-Lernverfahren
- e) überwachtes Lernverfahren
- f) unüberwachtes Lernverfahren
- g) Overfitting
- h) Fluch der Dimensionen
- i) Klassenprototyp
- j) Multi-Layer-Perzeptron

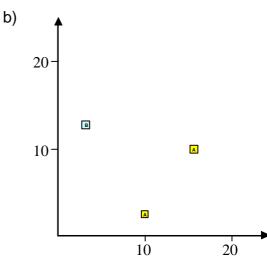
12P


Folgend sind drei Mustervektoren X_i vorgegeben. Führen Sie auf diesen Mustern eine Trennung der Klassen A (Ausgabe = 0) und B (Ausgabe = 1) mit Hilfe einer Ihnen bekannten Perzeptronlernregel aus.

Die Anfangsgewichte seien $\mathbf{w}(0) = (-2, -2)$ mit dem Schwellwert $\mathbf{s}(0) = 26$ und $\gamma = 0.08$. Die Reihenfolge, mit der die Muster gelernt werden, entspricht dem Index des Musters.


- a) Schreiben Sie für jeden Lernschritt *t*=1,2,3 die Werte der Ein-, Ausgabe und Gewichte hin.
- b) Zeichnen Sie nach jedem Lernschritt im Diagramm die Lage der Geraden der aktuellen Klassentrennung des Perzeptrons ein.

$$X_1(A) = (10, 2)^T$$
; $X_2(B) = (3, 12)^T$; $X_3(A) = (15, 10)^T$


Schritt1: a)

Schritt2: a)

Schritt3: a)

AS-1.3	3 Korrelation	5P
a)	Nennen Sie die Oja-Lernregel.	(2P)
b)	Benennen Sie das Konvergenzziel der Oja-Lernregel.	(1P)
c)	Berechnen Sie für die in Aufgabe AS-1.2 angegebenen drei Muste Autokorrelationsmatrix.	r die (4P)
AS-1.	Self-Organizing-Maps (SOM)	10P
a)	Wie lautet die Auswahlregel für das Gewinnerneuron?	(2P)
b)	Geben Sie die Lernregel für SOM an.	(2P)
c)	Was sind die typischen Unterschiede zwischen Eingabe- und Ausg	gaberaum? (3P)
d)	Begründen Sie, warum das Netz besser konvergiert, wenn beim Ti Nachbarschaftsverhältnisse mit berücksichtigt werden.	raining (3P)

		_		
ΝЛ	latri	-	INI	r.
IVI	auı	ΝG	IJΝ	Ι.

Ende des Teils AS-1

Beginn Teil AS-2

AS-2.5 XOR-Problem

10P

Geben Sie die Werte für die Gewichte für ein zweischichtiges neuronales Netz an, welches die boolsche Funktion XOR implementiert. Diese ist für zwei Eingaben x_1 und x_2 folgendermaßen definiert: $XOR(x_1,x_2) = x_1 \overline{x_2} + \overline{x_1} x_2$

Im *hidden Layer* sollen zwei binäre Neuronen mit $S(z) = \begin{cases} 1 & z > 0.5 \\ 0 & z \le 0.5 \end{cases}$ zum Einsatz kommen.

Die Ausgabe wird von einem linearen Neuron erzeugt.

AS-2.6 Lernregeln

10P

a) Leiten Sie eine Gradienten-Lernregel für die Gewichte eines linearen Neurons für die Minimierung des LMSE (Least Mean Squared Error) für überwachtes Lernen her. (7P)

	diese Regel mit derjenige eden von der Hergeleitete		Was ist an der	Widrow (3P)
	Kurven	n Pagriffo:	(3D)	6P
a) Sensitivit b) Spezifitäi		т ведппе.	(3P)	
c) Fehlalarr	n und Ignoranz			
	mit kurzen Stichworten, v stem D(x) ermittelt.	vie man die ROC-Ku	rve für ein geg (1P)	gebenes

MatrikelNr:

MatrikelNr:	
 Wie sieht die ROC-Kurve eines von der wahren Diagnose völlig unabhängigen Diagnosesystems aus? (1P) 	gen
4. Wozu werden ROC-Kurven benötigt? Welche anderen Gütekriterien kenne (1P)	n Sie?
AS-2.8 Lagrange-Optimierung 6	Р
Ein Blumenkasten hat einen rechteckigen Boden der Abmessungen a und b bestimmte Höhe h . Das Volumen V ist vorgegeben. Sie haben nur wenig Farbe von außen anzustreichen. Bei welchen Abmessungen benötigen Sie am wenigste	e, um ihn
 a) Benennen Sie das Optimierungsziel sowie die Nebenbedingungen und stel dazu die Langrange-Funktion auf. (3P) 	len Sie

MatrikelNr:	
b) Berechnen Sie aus der Funktion das Optimum (3F	')
AS-2.9 ICA-Verfahren	13P
Die Independent Component Analysis ICA ist ein lineares Trennungsvo	erfahren.
 a) Erläutern Sie mit Stichworten die Problemstellung sowie möglic ICA. 	he Verfahren zu (2P)

(4P)

b) Welche 4 Einschränkungen gelten für die ICA?

Matrik	elNr:	
c)	Geben Sie die notwendigen Berechnungsschritte an und beschreiben Sie kurzen Stichworten, was der jeweilige Schritt für Aufgaben hat. (4P)	· mit
d)	Wie erhält man mehrere unabhängige Komponenten, wenn die Methode eine liefert? (1P)	immer nur
e)	Wie lautet die Fixpunktgleichung für eine Komponente?	(2P)

MatrikelNr:

MatrikelNr:
